Гидрофобность полисахаридов

Физические свойства

Большинство полисахаридов нерастворимы или плохо растворимы в воде. Чаще всего они бесцветные или желтоватые. В большинстве своем полисахариды не обладают запахом и вкусом, но иногда он может быть сладковатым.

Среди особых химических свойств полисахаридов можно выделить гидролиз и образование производных.

  • Гидролиз – это процесс, который происходит при взаимодействии углевода с водой при участии ферментов или катализаторов, таких как кислоты. Во время такой реакции полисахарид распадается на моносахариды. Таким образом, можно сказать, что гидролиз – процесс, обратный полимеризации.

https://www.youtube.com/watch?v=ytdeven-GB

Гликолиз крахмала можно выразить следующим уравнением:

  • 6Н10О5)n n Н2О = n С6Н12О6

Так, при реакции крахмала с водой под действием катализаторов мы получаем глюкозу. Количество ее молекул будет равно количеству мономеров, образовывавших молекулу крахмала.

  • Образование производных может происходить при реакциях полисахаридов с кислотами. В таком случае углеводы присоединяют к себе остатки кислот, вследствие чего образуются сульфаты, ацетаты, фосфаты и т. д. Кроме того, может происходить присоединение остатков метанола, что приводит к образованию сложных эфиров.

Функции

Функция Характеристика
Энергетическая Основной источник энергии. Расщепляются до моносахаридов с последующим окислением до СО2 и Н2О. При расщеплении 1 г углеводов выделяется 17,6 кДж энергии.
Структурная Входят в состав оболочек клеток и некоторых органелл. У растений полисахариды выполняют опорную функцию.
Запасающая Накапливаются в тканях растений (крахмал) и животных (гликоген). Используются при возникновении потребности в энергии.
Защитная Секреты, выделяющиеся разными железами, обогащены углеводами, например глюкопротеидами, защищающими стенки полых органов (пищевод, желудок, бронхи) от механических повреждений, проникновения вредных бактерий и вирусов.

Свойства

Пищевые полисахариды — основные источники энергии. Многие микроорганизмы легко разлагают до глюкозы крахмал, но большинство микроорганизмов не могут переварить целлюлозу или другие полисахариды, такие как хитин и арабиноксиланы. Эти углеводы могут усваиваться некоторыми бактериями и протистами. Жвачные животные и термиты, к примеру, используют микроорганизмы для переваривания целлюлозы.

Гидрофобность полисахаридов

Даже при том, что эти сложные углеводы не очень легко усваиваемы, они важны для питания. Их называют пищевыми волокнами, эти углеводы улучшают пищеварение среди прочей пользы. Основная функция пищевых волокон — изменение природного содержимого желудочно-кишечного тракта, и изменение всасывания других нутриентов и химических веществ.

[7][8] Растворимые волокна связываются с жёлчными кислотами в тонком кишечнике, растворяя их для лучшего усвоения; это в свою очередь понижает уровень холестерина в крови.[9] Растворимые волокна также замедляют всасывание сахара и уменьшают ответную реакцию на него после еды, нормализуют уровень содержания липидов в крови, и после ферментации в толстой кишке синтезируются в короткоцепочные жирные кислоты в качестве побочных продуктов с широким спектром физиологической активности (пояснение ниже). Хотя нерастворимые волокна и уменьшают риск диабета, механизм их действия до сих пор не изучен.[10]

Пищевые волокна считаются важными составляющими питания, и во многих развитых странах рекомендуется увеличивать их потребление.[7][8][11][12]

Резервные полисахариды

Крахмал

Крахмалы — полимеры глюкозы, в которых остатки глюкопиранозы образуют альфа-соединения. Они сделаны из смеси амилозы (15–20 %) и амилопектина (80–85 %). Амилоза состоит из линейной цепочки нескольких сотен глюкозных молекул, а амилопектин — разветвленная молекула, сделанная из нескольких тысяч глюкозных остатков (каждая цепочка из 24–30 глюкозных остатков — одна единица амилопектина).

Крахмалы нерастворимы в воде. Они могут перевариться при разрыве альфа-соединений (гликозидные соединения). И у животных, и людей есть амилазы, поэтому они могут переварить крахмал. Картофель, рис, мука и кукуруза — главные источники крахмала в человеческом питании. Растения запасают глюкозу в виде крахмалов.

Гликоген

Гликоген служит вторым по значению долговременным энергетическим запасом в клетках животных и грибов, который откладывается в виде энергии в жировой ткани. Гликоген в первую очередь образовывается в печени и мышцах, но также может вырабатываться гликогеногенезом в головном мозге и желудке.[13]

Предлагаем ознакомиться  Повысить завязь томатов легко Поможет борная кислота и йод

Гликоген — аналог крахмала, глюкозного полимера в растениях, иногда его называют «животный крахмал»,[14] имеет схожую структуру с амилопектином, но больше разветвлен и компактен, чем крахмал. Гликоген — полимер, связанный гликозидными связями α(1→4) (в точках разветвления — α(1→6)). Гликоген находится в форме гранул в цитозоли/цитоплазме многих клеток и играет важную роль в глюкозном цикле.

В гепатоцитах вскоре после еды гликоген может составлять до 8 процентов массы (у взрослых — 100—120 г).[15] Только гликоген, запасенный в печени, может быть доступен для других органов. В мышцах гликоген составляет 1-2 % массы. Количество гликогена, отложенного в теле — в особенности в мышцах, печени и эритроцитах[16][17][18] — зависит от физической активности, основного обмена и пищевых привычек, таких как периодическое голодание.

Гидрофобность полисахаридов

Гликоген состоит из разветвленной цепочки глюкозных остатков. Он находится в печени и мышцах.

  • Это энергетический запас для животных.
  • Это основная форма углевода, отложенного в теле животного.
  • Он нерастворим в воде. Йодом окрашивается в красный цвет.
  • Он превращается в глюкозу в процессе гидролиза.

Биологическая роль

Полисахариды в клетке и организме могут выполнять следующие функции:

  • защитную;
  • структурную;
  • запасающую;
  • энергетическую.

Защитная функция заключается прежде всего в том, что из полисахаридов состоят клеточные стенки живых организмов. Так, клеточная стенка растений состоит из целлюлозы, грибов – из хитина, бактерий – из муреина.

Кроме того, защитная функция полисахаридов в организме человека выражается в том, что железами выделяются секреты, обогащенные этими углеводами, которые защищают стенки таких органов как желудок, кишечник, пищевод, бронхи и т. д. от механических повреждений и проникновения болезнетворных бактерий.

https://www.youtube.com/watch?v=ytcreatorsen-GB

Структурная функция полисахаридов в клетке заключается в том, что они входят в состав плазматической мембраны. Также они являются компонентами мембран органоидов.

Следующая функция заключается в том, что основные запасные вещества организмов являются именно полисахаридами. Для животных и грибов это гликоген. У растений запасным полисахаридом является крахмал.

Последняя функция выражается в том, что полисахарид – это важный источник энергии для клетки. Получить ее из такого углевода клетка может путем его расщепления на моносахариды и дальнейшего окисления до углекислого газа и воды. В среднем при расщеплении одного грамма полисахаридов клетка получает 17,6 кДж энергии.

Структурные полисахариды

Арабиноксиланы

Арабиноксиланы находятся и в главных, и во второстепенных стенках клеток растений, и они являются сополимерами двух пентозных сахаров: арабиноза и ксилоза.

Целлюлоза

Строительный материал растений формируется в первую очередь из целлюлозы. Дерево содержит, кроме целлюлозы, много лигнина, а бумага и хлопок — почти чистая целлюлоза. Целлюлоза — полимер повторяющихся глюкозных остатков, соединенных вместе бета-связями. У людей и многих животных нет энзимов разорвать бета-связи, поэтому они не переваривают целлюлозу.

Определенные животные, такие как термиты, могут переварить целлюлозу, потому что в их пищеварительной системе присутствуют энзимы, способные переварить её. Целлюлоза нерастворима в воде. Не меняет цвет при смешивании с йодом. При гидролизе переходит в глюкозу. Это самый распространенный углевод в мире.

Хитин — один из самых часто встречающихся натуральных полимеров. Он является строительным компонентом многих животных, к примеру экзоскелетов. Он разлагается микроорганизмами в течение долгого времени в окружающей среде. Его распад могут катализировать ферменты под названием хитиназы, которые секретируют такие микроорганизмы как бактерии и грибы, и производят некоторые растения.

Химически хитин очень близок хитозану (более водорастворимое производное хитина). Он также очень похож на целлюлозу: это тоже длинная неразветвленная цепочка глюкозных остатков, но с добавочными группами. Оба материала придают организмам прочность.

Пектины

Пектины — совокупность полисахаридов, состоящих из а-1,4-связей между остатками D-галактопиранозилуроновой кислоты. Они есть во многих важнейших клеточных стенках и в недревесных частях растений.

Применение полисахаридов

Эти вещества широко используются в промышленности и медицине. Большинство из них добываются в лабораториях путем полимеризации простых углеводов.

Гидрофобность полисахаридов

Наиболее широко используемыми полисахаридами являются крахмал, целлюлоза, декстрин, агар-агар.

Применение полисахаридов в промышленности
Название вещества Использование Источник
Крахмал Находит применение в пищевой промышленности. Также служит сырьем для получения глюкозы, спирта. Применяется для изготовления клея, пластмасс. Кроме того, используется и в текстильной промышленности Получают из клубней картофеля, а также из семян кукурузы, рисовой сечки, пшеницы и других богатых крахмалом растений
Целлюлоза Используется в целлюлозно-бумажной и текстильной промышленности: из нее изготавливают картон, бумагу, вискозу. Производные целлюлозы (нитро-, метил-, ацетилцеллюлоза и др.) находят широкое применение в химической промышленности. Из них же производят синтетические волокна и ткани, искусственную кожу, краски, лаки, пластмассы, взрывчатку и многое другое Добывают это вещество из древесины, в основном хвойных растений. Также есть возможность получения целлюлозы из конопли и хлопка
Декстрин Является пищевой добавкой Е1400. Также применяется при изготовлении клеящих веществ Получают из крахмала путем термической обработки
Агар-агар Это вещество и его производные применяют в качестве стабилизаторов при изготовлении продуктов питания (например, мороженого и мармелада), лаков, красок Добывают из бурых водорослей, так как он является одним из компонентов их клеточной оболочки

Теперь вы знаете, что такое полисахариды, для чего они используются, какова их роль в организме, какими физическими и химическими свойствами они обладают.

Кислотные полисахариды

Кислотные полисахариды — полисахариды, содержащие карбоксильные группы, фосфатные группы и/или группы серныхсложных эфиров.

Бактериальные капсульные полисахариды

Патогенные бактерии обычно вырабатывают вязкий, слизистый слой полисахаридов. Эта «капсула» скрывает антигеновыебелки на поверхности бактерии, которая иначе вызвала бы иммунный ответ и таким образом привела к разрушению бактерии. Капсульные полисахариды водорастворимые, зачастую кислотные, и у них есть молекулярная масса на уровне 100—2000 kDa.

Они линейны и состоят из постоянно повторяющихся субъединиц от одного до шести моносахаридов. Существует огромное структурное многообразие; около двух сотен разных полисахаридов производится только одной кишечной палочкой. Смесь капсульных полисахаридов, либо конъюгируется, либо естественным путем используется как вакцина.

Бактерии и многие другие микробы, включая грибы и водоросли, часто секретируют полисахариды, чтобы прилипнуть к поверхностям для предотвращения пересыхания. Люди научились превращать некоторые такие полисахариды в полезные продукты, включая ксантановую камедь, декстран, гуаровая камедь, велановую камедь, дьютановую камедь и пуллулан.

Гидрофобность полисахаридов

Большинство из этих полисахаридов выделяют полезные вязкоупругие свойства, когда растворяются в воде на очень низком уровне.[20] Это позволяет использовать различные жидкости в ежедневной жизни, к примеру, в таких продуктах как лосьоны, очищающие средства и краски, вязкие в стабильном состоянии, но становятся намного более жидкие при малейшем движении и используются для размешивания или взбалтывания, чтобы наливать, вытирать или расчесывать. Это свойство называется псевдопластичностью; изучение таких материалов называется реология.

Вязкость велановой камеди
Скорость сдвига (rpm) Вязкость (cP)
0.3 23330
0.5 16000
1 11000
2 5500
4 3250
5 2900
10 1700
20 900
50 520
100 310

У водного раствора таких полисахаридов есть интересное свойство: если придать ему круговое движение, раствор сначала продолжает кружить по инерции, замедляя движение благодаря вязкости, а потом меняет направление, после чего останавливается. Этот разворот происходит благодаря упругости цепочек полисахаридов, которые после растяжения стремятся возвратиться в расслабленное состояние.

https://www.youtube.com/watch?v=upload

Мембранные полисахариды выполняют другие роли в бактериальной экологии и физиологии. Они служат барьером между клеточной стенкой и окружающим миром, посредником во взаимодействии хозяин-паразит, и образуют строительные компоненты биопленки. Эти полисахариды синтезируются из нуклеотидно-активированных предшественников (их называют нуклеотидные сахара) и, во многих случаях, все ферменты, необходимые для биосинтеза, собрания и транспортировки целого полимера закодированые генами, организованны в специальных группах с геномом организма.

Недавно были найдены энзимы, которые образуют A-группу (гомополимерные) и B-группу (гетерополимерные) O-антигенов и определены их метаболические пути.[21] Экзополисахаридный альгинат — линейный полисахарид, связанный β-1,4-остатками D-маннуроновой и L-гулуроновой кислот, и ответственный за мукоидный фенотип последней стадии муковисцедоза.

https://www.youtube.com/watch?v=ytpressen-GB

Локусы Pel и psl — две недавно обнаруженные генетические группы, которые также закодированы экзополисахаридами, и как выяснилось, являются очень важным составляющим биопленки. Рамнолипиды — биологические поверхностно-активные вещества, производство которых строго регулируется на транскрипционном уровне, но роль, которую они играют во время болезни, пока не изучена.

Примечания

  1. Varki A., Cummings R., Esko J., Freeze H., Stanley P., Bertozzi C., Hart G., Etzler M.Essentials of glycobiology (неопр.). — Essentials of Glycobiology. — Cold Spring Harbor Laboratory Press; 2nd edition, 2008. — ISBN 0-87969-770-9.
  2. Varki A., Cummings R., Esko J., Jessica Freeze, Hart G., Marth J.Essentials of glycobiology (неопр.). — Essentials of glycobiology. — Cold Spring Harbor Laboratory Press (англ.), 1999. — ISBN 0-87969-560-9.
  3. IUPACGold Book internet edition: “homopolysaccharide (homoglycan)“.
  4. IUPACGold Book internet edition: “heteropolysaccharide (heteroglycan)“.
  5. Matthews, C. E.; K. E. Van Holde; K. G. Ahern (1999) Biochemistry. 3rd edition. Benjamin Cummings. ISBN 0-8053-3066-6
  6. N.A.Campbell (1996) Biology (4th edition). Benjamin Cummings NY. p.23 ISBN 0-8053-1957-3
  7. 12Dietary Reference Intakes for Energy, Carbohydrate, fiber, Fat, Fatty Acids, Cholesterol, Protein, and Amino Acids (Macronutrients) (2005), Chapter 7: Dietary, Functional and Total fiber. (неопр.) (недоступная ссылка). US Department of Agriculture, National Agricultural Library and National Academy of Sciences, Institute of Medicine, Food and Nutrition Board. Архивировано 27 октября 2011 года.
  8. 12Eastwood M., Kritchevsky D. Dietary fiber: how did we get where we are? (англ.) // Annu Rev Nutr (англ.) : journal. — 2005. — Vol. 25. — P. 1—8. — doi:10.1146/annurev.nutr.25.121304.131658. — PMID 16011456.
  9. Anderson JW; Baird P; Davis RH; and others. Health benefits of dietary fiber (англ.) // Nutr Rev (англ.) : journal. — 2009. — Vol. 67, no. 4. — P. 188—205. — doi:10.1111/j.1753-4887.2009.00189.x. — PMID 19335713.
  10. Weickert M. O., Pfeiffer A. F. Metabolic effects of dietary fiberand any other substance that consume and prevention of diabetes (англ.) // J Nutr (англ.) : journal. — 2008. — Vol. 138, no. 3. — P. 439—442. — PMID 18287346.
  11. Dietary Benefits of Fucoidan from Sulfated Polysaccharides (неопр.) (недоступная ссылка). Дата обращения 16 августа 2017.Архивировано 16 августа 2017 года.
  12. Jones P. J., Varady K. A.Are functional foods redefining nutritional requirements? (англ.) // Appl Physiol Nutr Metab (англ.) : journal. — 2008. — Vol. 33, no. 1. — P. 118—123. — doi:10.1139/H07-134. — PMID 18347661. Архивировано 27 февраля 2012 года.
  13. Anatomy and Physiology. Saladin, Kenneth S. McGraw-Hill, 2007.
  14. Animal starch (неопр.). Merriam Webster. Дата обращения 11 мая 2014.
  15. 12Campbell, Neil A.; Brad Williamson; Robin J. Heyden.Biology: Exploring Life (неопр.). — Boston, Massachusetts: Pearson Prentice Hall, 2006. — ISBN 0-13-250882-6.
  16. Moses S. W., Bashan N., Gutman A.Glycogen metabolism in the normal red blood cell (англ.) // Blood (англ.). — American Society of Hematology (англ.), 1972. — December (vol. 40, no. 6). — P. 836—843. — PMID 5083874. (недоступная ссылка)
  17. http://jeb.biologists.org/cgi/reprint/129/1/141.pdf
  18. Miwa I., Suzuki S. An improved quantitative assay of glycogen in erythrocytes (англ.) // Annals of Clinical Biochemistry (англ.) : journal. — 2002. — November (vol. 39, no. Pt 6). — P. 612—613. — doi:10.1258/000456302760413432. — PMID 12564847.
  19. Page 12 in: Exercise physiology: energy, nutrition, and human performance, By William D. McArdle, Frank I. Katch, Victor L. Katch, Edition: 6, illustrated, Published by Lippincott Williams {amp}amp; Wilkins, 2006, ISBN 0-7817-4990-5, ISBN 978-0-7817-4990-9, 1068 pages
  20. Viscosity of Welan Gum vs. Concentration in Water. Архивированная копия (неопр.) (недоступная ссылка). Дата обращения 2 октября 2009.Архивировано 18 июля 2011 года.
  21. Guo H., Yi W., Song J. K., Wang P. G. Current understanding on biosynthesis of microbial polysaccharides (англ.) // Curr Top Med Chem (англ.) : journal. — 2008. — Vol. 8, no. 2. — P. 141—151. — doi:10.2174/156802608783378873. — PMID 18289083.
  22. Cornelis P (editor).Pseudomonas: Genomics and Molecular Biology (англ.). — 1st. — Caister Academic Press (англ.), 2008. — ISBN 978-1-904455-19-6.
Ссылка на основную публикацию
Adblock detector